Skip to main content
Log in

Fully-exposed Pt clusters stabilized on Sn-decorated nanodiamond/graphene hybrid support for efficient ethylbenzene direct dehydrogenation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The pursuit of energy conservation and environmental protection has always been a hot topic in the catalytic fields, which is inseparable from the rational designing of efficient catalysts and an in-depth understanding of the catalytic reaction mechanism. In this work, fully-exposed Pt clusters were fabricated on the atomically dispersed Sn decorated nanodiamond/graphene (Sn-ND@G) hybrid support and employed for direct dehydrogenation (DDH) of ethylbenzene (EB) to styrene (ST). The detailed structural characterizations revealed the fully-exposed Pt clusters were stabilized on Sn-ND@G, assisted by the spatial separation of atomically dispersed Sn species. The as-prepared Pt/Sn-ND@G catalyst showed enhanced ST yield (136.2 molEB·molPt−1·h−1 EB conversion rate and 99.7% ST selectivity) and robust long-term stability at 500 °C for the EB DDH reaction, compared with the traditional ND@G supported Pt nanoparticle catalyst (Pt/ND@G). The ST prefers to desorb from the fully-exposed Pt clusters, resulting in the enhanced DDH catalytic performance of the Pt/Sn-ND@G catalyst. The present work paves a new way for designing highly dispersed and stable supported metal catalysts for DDH reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, J.; Yue, Y. Y.; Liu, H. Y.; Da, Z. J.; Liu, C. C.; Ma, A. Z.; Rong, J. F.; Su, D. S.; Bao, X. J.; Zheng, H. D. Origin of the robust catalytic performance of nanodiamond-graphene-supported Pt nanoparticles used in the propane dehydrogenation reaction. ACS Catal. 2017, 7, 3349–3355.

    Article  CAS  Google Scholar 

  2. Zhang, Y. Y.; Zhao, Y.; Otroshchenko, T.; Perechodjuk, A.; Kondratenko, V. A.; Bartling, S.; Rodemerck, U.; Linke, D.; Jiao, H. J.; Jiang, G. Y. et al. Structure-activity-selectivity relationships in propane dehydrogenation over Rh/ZrO2 catalysts. ACS Catal. 2020, 10, 6377–6388.

    Article  Google Scholar 

  3. Jia, X. Q.; Huang, Z. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation. Nat. Chem. 2016, 8, 157–161.

    Article  CAS  Google Scholar 

  4. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  5. Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2021, 15, 38–70.

    Article  Google Scholar 

  6. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  CAS  Google Scholar 

  7. Lin, L. H.; Chen, Z.; Chen, W. X. Single atom catalysts by atomic diffusion strategy. Nano Res. 2021, 14, 4398–4416.

    Article  CAS  Google Scholar 

  8. Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527.

    Article  CAS  Google Scholar 

  9. Li, Z. J.; Zhang, M. Y.; Zhang, L. L.; Dong, X. L.; Leng, L. P.; Horton, J. H.; Wang, J. Engineering the atomic interface of porous ceria nanorod with single palladium atoms for hydrodehalogenation reaction. Nano Res. 2022, 15, 1338–1346.

    Article  CAS  Google Scholar 

  10. Chen, Y. P.; Wei, J. T.; Duyar, M. S.; Ordomsky, V. V.; Khodakov, A. Y.; Liu, J. Carbon-based catalysts for Fischer-Tropsch synthesis. Chem. Soc. Rev. 2021, 50, 2337–2366.

    Article  CAS  Google Scholar 

  11. Ren, X. M.; Guo, M.; Li, H.; Li, C. B.; Yu, L.; Liu, J.; Yang, Q. H. Microenvironment engineering of ruthenium nanoparticles incorporated into silica nanoreactors for enhanced hydrogenations. Angew. Chem., Int. Ed. 2019, 58, 14483–14488.

    Article  CAS  Google Scholar 

  12. Wang, L. L.; Diao, J. Y.; Peng, M.; Chen, Y. L.; Cai, X. B.; Deng, Y. C.; Huang, F.; Qin, X. T.; Xiao, D. Q.; Jiang, Z. et al. Cooperative sites in fully exposed Pd clusters for low-temperature direct dehydrogenation reaction. ACS Catal. 2021, 11, 11469–11477.

    Article  CAS  Google Scholar 

  13. Zhang, J. Y.; Deng, Y. C.; Cai, X. B.; Chen, Y. L.; Peng, M.; Jia, Z. M.; Jiang, Z.; Ren, P. J.; Yao, S. Y.; Xie, J. L. et al. Tin-assisted fully exposed platinum clusters stabilized on defect-rich graphene for dehydrogenation reaction. ACS Catal. 2019, 9, 5998–6005.

    Article  CAS  Google Scholar 

  14. Chen, X. W.; Peng, M.; Cai, X. B.; Chen, Y. L.; Jia, Z. M.; Deng, Y. C.; Mei, B. B.; Jiang, Z.; Xiao, D. Q.; Wen, X. D. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 2021, 12, 2664.

    Article  CAS  Google Scholar 

  15. Peng, M.; Dong, C. Y.; Gao, R.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2021, 7, 262–273.

    Article  CAS  Google Scholar 

  16. Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

    Article  CAS  Google Scholar 

  17. Liu, L. C.; Meira, D. M.; Arenal, R.; Concepcion, P.; Puga, A. V.; Corma, A. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: Which are the working catalytic sites? ACS Catal. 2019, 9, 10626–10639.

    Article  CAS  Google Scholar 

  18. Dong, C.; Yu, Q.; Ye, R. P.; Su, P. P.; Liu, J.; Wang, G. H. Hollow carbon sphere nanoreactors loaded with PdCu nanoparticles: Void-confinement effects in liquid-phase hydrogenations. Angew. Chem., Int. Ed. 2020, 59, 18374–18379.

    Article  CAS  Google Scholar 

  19. Huang, H. G.; Shen, K.; Chen, F. F.; Li, Y. W. Metal-organic frameworks as a good platform for the fabrication of single-atom catalysts. ACS Catal. 2020, 10, 6579–6586.

    Article  CAS  Google Scholar 

  20. Ding, S. P.; Guo, Y. L.; Hülsey, M. J.; Zhang, B.; Asakura, H.; Liu, L. M.; Han, Y.; Gao, M.; Hasegawa, J. Y.; Qiao, B. T. et al. Electrostatic stabilization of single-atom catalysts by ionic liquids. Chem 2019, 5, 3207–3219.

    Article  CAS  Google Scholar 

  21. Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.

    Article  Google Scholar 

  22. Li, Z. X.; Hu, M. L.; Liu, J. H.; Wang, W. W.; Li, Y. J.; Fan, W. B.; Gong, Y. X.; Yao, J. S.; Wang, P.; He, M. et al. Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site. Nano Res. 2022, 15, 1983–1992.

    Article  CAS  Google Scholar 

  23. Keller, N.; Maksimova, N. I.; Roddatis, V. V.; Schur, M.; Mestl, G.; Butenko, Y. V.; Kuznetsov, V. L.; Schlögl, R. The catalytic use of onion-like carbon materials for styrene synthesis by oxidative dehydrogenation of ethylbenzene. Angew. Chem., Int. Ed. 2002, 41, 1885–1888.

    Article  CAS  Google Scholar 

  24. Zhang, J.; Su, D. S.; Blume, R.; Schlögl, R.; Wang, R.; Yang, X. G.; Gajoviić, A. Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angew. Chem., Int. Ed. 2010, 49, 8640–8644.

    Article  CAS  Google Scholar 

  25. Meima, G. R.; Menon, P. G. Catalyst deactivation phenomena in styrene production. Appl. Catal. A Gen. 2001, 212, 239–245.

    Article  CAS  Google Scholar 

  26. Lee, E. H. Iron oxide catalysts for dehydrogenation of ethylbenzene in the presence of steam. Catal. Rev. 1974, 8, 285–305.

    Article  Google Scholar 

  27. Muhler, M.; Schütze, J.; Wesemann, M.; Raymen, T.; Dent, A.; Schlögl, R.; Ertl, G. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene: I. Solid-state chemistry and bulk characterization. J. Catal. 1990, 126, 339–360.

    Article  CAS  Google Scholar 

  28. Nakaya, Y.; Hirayama, J.; Yamazoe, S.; Shimizu, K. I.; Furukawa, S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 2020, 11, 2838.

    Article  CAS  Google Scholar 

  29. Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R. Q.; Jiang, Z.; Zhou, W.; Zhang, J. C. et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19450–19459.

    Article  CAS  Google Scholar 

  30. Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.

    Article  Google Scholar 

  31. Zha, S. J.; Sun, G. D.; Wu, T. F.; Zhao, J. B.; Zhao, Z. J.; Gong, J. L. Identification of Pt-based catalysts for propane dehydrogenation via a probability analysis. Chem. Sci. 2018, 9, 3925–3931.

    Article  CAS  Google Scholar 

  32. Dervishi, E.; Ji, Z. Q.; Htoon, H.; Sykora, M.; Doorn, S. K. Raman spectroscopy of bottom-up synthesized graphene quantum dots: Size and structure dependence. Nanoscale 2019, 11, 16571–16581.

    Article  CAS  Google Scholar 

  33. Huang, H.; Wang, C.; Zhang, S. H.; Zhang, L.; Pan, G. B. Electrodeposition of platinum nanoparticles onto porous GaN as a binder-free electrode for hydrogen evolution reaction. Chem. Phys. Lett. 2019, 737, 136796.

    Article  CAS  Google Scholar 

  34. Bauters, S.; Scheinost, A. C.; Schmeide, K.; Weiss, S.; Dardenne, K.; Rothe, J.; Mayordomo, N.; Steudtner, R.; Stumpf, T.; Abram, U. et al. Signatures of technetium oxidation states: A new approach. Chem. Commun. 2020, 56, 9608–9611.

    Article  CAS  Google Scholar 

  35. Deng, Y. C.; Guo, Y.; Jia, Z. M.; Liu, J. C.; Guo, J. Q.; Cai, X. B.; Dong, C. Y.; Wang, M.; Li, C. Y.; Diao, J. Y. et al. Few-atom Pt ensembles enable efficient catalytic cyclohexane dehydrogenation for hydrogen production. J. Am. Chem. Soc. 2022, 144, 3535–3542.

    Article  CAS  Google Scholar 

  36. Chen, S.; Huang, L.; Sun, Z. H.; Cao, L. N.; Ying, W. X.; Shi, X. X.; Liu, W.; Gu, J.; Zheng, X. S.; Zhu, J. F. et al. Synthesis of quasi-bilayer subnano metal-oxide interfacial cluster catalysts for advanced catalysis. Small 2020, 16, 2005571.

    Article  CAS  Google Scholar 

  37. Zeng, R. J.; Wang, W. J.; Cai, G. N.; Huang, Z. L.; Tao, J. M.; Tang, D. P.; Zhu, C. Z. Single-atom platinum nanocatalyst-improved catalytic efficiency with enzyme-DNA supermolecular architectures. Nano Energy 2020, 74, 104931.

    Article  CAS  Google Scholar 

  38. Shang, H. S.; Chen, W. X.; Jiang, Z. L.; Zhou, D. N.; Zhang, J. T. Atomic-dispersed platinum anchored on porous alumina sheets as an efficient catalyst for diboration of alkynes. Chem. Commun. 2020, 56, 3127–3130.

    Article  CAS  Google Scholar 

  39. Liu, Q.; Zhang, Z. L. Platinum single-atom catalysts: A comparative review towards effective characterization. Catal. Sci. Technol. 2019, 9, 4821–4834.

    Article  CAS  Google Scholar 

  40. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407–7410.

    Article  CAS  Google Scholar 

  41. Dai, Y. H.; Wang, Y.; Liu, B.; Yang, Y. H. Metallic nanocatalysis: An accelerating seamless integration with nanotechnology. Small 2015, 11, 268–289.

    Article  CAS  Google Scholar 

  42. Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 2018, 8, 1701343.

    Article  Google Scholar 

  43. Schwach, P.; Pan, X. L.; Bao, X. H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects. Chem. Rev. 2017, 117, 8497–8520.

    Article  CAS  Google Scholar 

  44. Shen, C. Q.; Ji, Y. J.; Wang, P. T.; Bai, S. X.; Wang, M.; Li, Y. Y.; Huang, X. Q.; Shao, Q. Interface confinement in metal nanosheet for high-efficiency semi-hydrogenation of alkynes. ACS Catal. 2021, 11, 5231–5239.

    Article  CAS  Google Scholar 

  45. Ren, Z.; Yang, Y. S.; Wang, S.; Li, X. L.; Feng, H. S.; Wang, L.; Li, Y. M.; Zhang, X.; Wei, M. Pt atomic clusters catalysts with local charge transfer towards selective oxidation of furfural. Appl. Catal. B Environ. 2021, 295, 120290.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFA1502802), the National Natural Science Foundation of China (Nos. 21961160722, 92145301, U21B2092, 22072162, and 91845201), the Liaoning Revitalization Talents Program (No. XLYC1907055), Natural Science Foundation of Liaoning Province (No. 2021-MS001), IMR Innovation Fund (No. 2022-PY05), Dalian National Lab for Clean Energy (No. DNL Cooperation Fund 202001), and the Sinopec China. N. W. hereby acknowledges the funding support from the Research Grants Council of Hong Kong (Nos. C6021-14E, N_HKUST624/19, and 16306818). The XAS experiments were conducted in Shanghai Synchrotron Radiation Facility (SSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Sun, Jiangyong Diao or Hongyang Liu.

Electronic Supplementary Material

12274_2022_4650_MOESM1_ESM.pdf

Fully-exposed Pt clusters stabilized on Sn-decorated nanodiamond/graphene hybrid support for efficient ethylbenzene direct dehydrogenation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Qin, X., Sun, T. et al. Fully-exposed Pt clusters stabilized on Sn-decorated nanodiamond/graphene hybrid support for efficient ethylbenzene direct dehydrogenation. Nano Res. 15, 10029–10036 (2022). https://doi.org/10.1007/s12274-022-4650-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4650-6

Keywords

Navigation